
Structs (1)
In data processing, a collection of data that can be treated as a single unit is a record. The 

components of this collection (fields or members or attributes) are uniquely named and have 

values. The values may be numbers (integers or floating point), texts, etc. and also other 

collections. 

For example, data set presenting a student is a record. The attributes are his/her name (text), 

date of birth (it is itself a record and its attributes are day, month and year), number of 

collected points (integer), average mark (floating point number), etc. Records with the same 

set of attributes belong to the same record type.

In C the records are called as structs. To create and process a record we have at first declare 

the record type. Example:

struct Date

{ // declaring a new data type – record presenting the date

int day, // attribute day, an integer

month, // attribute month, an integer

year; // attribute year, an integer

};  // semicolon needed

The declaration of a new struct type neither defines a variable nor allocates memory. It just 

explains to the compiler the meaning of words Date, day, month, year. The struct 

declarations are in most cases located at the beginning of source file or put into the project 

header file. 



Structs (2)
Generally:

struct <struct_type_name> { <declarations_of_attributes> };

The attributes may be of different types. Examples:

struct Date

{

int day; // attribute day, an integer

char month[4]; // attribute month, array for strings like "Jan", "Feb", "Mar", etc.

int year; // attribute year, an integer

};

struct Date

{

int Day; // attribute Day, an integer

char *pMonth; // attribute pMonth, pointer to string like "January", "February", etc.

int Year; // attribute Year, an integer

};

struct Student

{

    const char *pName; // attribute pName, pointer to string presenting the name

struct Date Birthdate; // attribute Birthdate, struct Date nested into struct Student

double AverageMark; // attribute AverageMark, floating point value

};



Structs (3)
After declaring a new struct type we can declare variables of that type:

struct <struct_type_name> <list_of_variable_names>;

Example:

struct Date yesterday, today, tomorrow;

struct Student guy;

To access attributes of a struct variables use expression with point operator:

<struct_variable_name>.<attribute_name>

Examples:

today.day = 25;

tomorrow.day = today.day + 1;

today.year = 2018;

strcpy(today.month, "Oct"); // here we mean that the attribute is char month[4]

if (today.day == 31)

{

today.day = 1;

strcpy(today.month, "Nov");

}

guy.AverageMark = 4.14;

guy.Birthdate.day = 25; // nested struct, use point operator twice

strcpy(guy.Birthdate.month, "Oct");

printf("Student: %s: average mark %.2f\n", guy.pName, guy.AverageMark);



Structs (4)
The struct variables may be initialized:

struct <struct_type_name> <variable_name> = { <list_of_attribute_values> };

Examples:

struct Date today = { 26, "Oct", 2016 };

struct Student guy_1 = { "Al Capone", { 26, "Oct", 2008 }, 4.14 }; // nested structs

struct Student guy_2 = { "John Dillinger" }; // only the first attribute has value, the others

                                                                       // are automatically initialized to zero

struct Student guy_3; // no initalization, values of attributes are garbage (not zeroes)

From C standard 1999 (C99) it is possible to initialize any selection of attributes using the 

designated initializers like: 

struct Student guy_2 = { .pName = "John Dillinger", .AverageMark = 4.14 }; 

Declaring of stuct type, variables of this type as well as their initialization can be 

concentrated into one statement, for example:

struct Point

{

int x,

y;

} p1 = { 0, 0 }, p2 = { 1,1 }; // you may later use the declaration of Point for other variables



Structs (5)

In C, the struct type name must always preceded by keyword struct. In C++ it is not 

obligatory, so 

struct Date today = { 26, "Oct", 2016 }; // legal both in C and C++

Date today = { 26, "Oct", 2016 }; // legal in C++

However, in C there is a possibility to get rid of repeating the struct keyword:

typedef struct date DATE;

typedef does not create a new type, it simply creates an alias for existing types. Examples:

DATE today; // the same as struct Date today

typedef DWORD unsigned long int;

DWORD i; // the same as unsigned long int i

Declaration of a new type and assigning to it the typedef may be done in one statement, like

typedef struct Date

{

int day;

char month[4];

int year;

} DATE;

Good programming practice: typedef names should be in uppercase letters.



Structs (6)
Arrays of structs are declared in well-known way:

struct <struct_type_name> <array_name>[dimension];

To access an attribute of an array element write expression:

<array_name>[<index>].<attribute_name>

To declare an array of structs with initalizations write:

struct <struct_type_name> <array_name>[dimension] =

{

{ <intial_values_for_element_0> },

{ <intial_values_for_element_1> },

…………………………………

{ <intial_values_for_element_n> }

};

Assignment between structs of the same type is allowed. The complete contents of one 

struct is copied into the other.

Address-of operator (&), dereference operator (*) and sizeof operator for structs are 

allowed. Arithmetical and logical operations between structs are not defined. The 

comparison operations are also not possible.

A struct can be a formal as well as an actual parameter of a function. When the function is 

called, the contents of actual parameter is copied into the formal parameter.



Structs (7)
Examples:

struct Date October[31];

for (int i = 0;  i < 31;  i++)

{

October[i].day = i + 1;

strcpy(October[i].month, "Oct");

October[i].year = 2019;

}

Student group[3] =

{

{ "Al Capone", { 26, "Oct", 2008 }, 4.14 },

{ "Bonnie Parker", { 25, "Nov", 2009 }, 3.14 },

{ "Clyde Barrow", { 20, "Dec", 2007 }, 2.14 }

};

struct Date today = { 26, "Oct", 2019};

struct Date tomorrow;

tomorrow = today; // assignment, the same as 

                               // memcpy(&tomorrow, &today, sizeof (struct Date));

tomorrow.day++;



Structs (8)
Exercise:

typedef struct Date

{

int day; 

char month[4];

int year;

} DATE;

typedef struct Exam

{

const char *pSubject;

DATE date;

int mark;

} EXAM;

Write a program that:

1. Creates an array presenting all your examinations on this semester and initializes it. As 

the dates and marks are not known yet, fantasize. 

2. Prints the array. The printf format string must be "%s at %d-%s-%d, mark is %d\n"

3. Calculates and prints the average mark.



Structs (9)
Let us have 

struct Date

{

short int Month,

Year;

};

struct Book 

{

char *pAuthor,

*pTitle;

char ISBN[15]; 

struct Date Edition;

};

struct Book textbook =

{ "Greg Perry & Dean Miller", "C programming. Absolute Beginners Guide", 

"978-0789751980", { 8, 2013} }; // errors, pointers to author and title are not constants



Structs (10)
struct Book 

{

const char *pAuthor,

*pTitle;

char ISBN[15]; 

struct Date Edition;

};

or

struct Book

{

   char Author [100], // fixed length is bad solution

Title [100];

char ISBN[15]; 

struct Date Edition;

};

struct Book textbook =

{ "Greg Perry & Dean Miller", "C programming. Absolute Beginners Guide", 

"978-0789751980", { 8, 2013} }; // now correct

To get flexible software we have to allocate memory for two strings located outside of the 

struct body. 



Structs (11)
void ProcessBook(const char *pAuthor, const char *pTitle, const char *pISBN, 

                               const struct Date edition)

{

  struct Book textbook; // local variable, exists only when the function is running

  textbook.pAuthor = (char *)malloc(strlen(pAuthor) +1); // allocate memory for author

  strcpy(textbook.pAuthor, pAuthor); // copy the author's name

  textbook.pTitle = (char *)malloc(strlen(pTitle) +1);

  strcpy(textbook.pTitle, pTitle);

  strcpy(textbook.ISBN, pISBN);

  textbook.Edition = edition;

  …………………………….. // do something

  free(textbook.pAuthor); // do not forget to release memory, textbook as local variable is 

                                         // destroyed automatically, but dynamically allocated memory

                                         // must be released by us

   free(textbook.pTitle);

}

Call example:

const struct Date when = { 8, 2013 }; // cannot change the values of attributes later

ProcessBook("Greg Perry & Dean Miller", "C programming. Absolute Beginners Guide", 

"978-0789751980", when) ;



Structs (12)
Exercise:

typedef struct Date

{

int day; 

char *pMonth; // full name, locates on its own memory field that must be allocated

int year;

} DATE;

typedef struct Exam

{

char *pSubject; // locates on its own memory field that must be allocated

DATE date;

int mark;

} EXAM;

Write a program that:

1. Creates an array presenting all your examinations on this semester and intializes it. As 

the dates and marks are not known yet, fantasize. 

2. Prints the array. The printf format string must be "%s at %d-%s-%d, mark is %d\n"

3. Calculates and prints the average mark.

4. Before exit releases the allocated memory.



Structs (13)
Let us have:

struct Book textbook1, textbook2;

textbook2 = textbook1;

This is extremely dangerous, because now 

textbook1 and textbook2 are sharing the strings 

presenting the author and title.

Assignment is just a simple bytewise copy. So the pointer to textbook1 author is 

copied into textbook2.pAuthor field. 

Suppose we want to change the author of textbook1:

free(textbook1.pAuthor);

textbook1.pAuthor = (char *)malloc(strlen("Stephen Prata") + 1); 

strcpy(textbook1.pAuthor, "Stephen Prata");

But now textbook2.pAuthor points to a memory field that is released: we have lost 

the author of textbook2. 



Structs (14)
Solution:

struct Book textbook1, textbook2;

textbook2 = textbook1;

textbook2.pAuthor = (char *)malloc(strlen(textbook1.pAuthor) + 1);

                  // allocate new memory

strcpy(textbook2.pAuthor, textbook1.pAuthor);

                  // make a copy

textbook2.pTitle = (char *)malloc(strlen(textbook1.pTitle) + 1);

strcpy(textbook2.pTitle, textbook1.pTitle);

Now textbook1 and textbook2 can be handled separately..



Structs (15)
Let us have:

struct Date

{

int day; 

char month[4];

int year;

};

struct Date Today; // Today is a local or global variable, its visibility and lifetime are

// specified by C standard. After declaration we may work with its

// attributes

struct Date *pToday; // pToday is not the struct but only a pointer to it. The struct does

// not exist yet, to work with it we must at first allocate the memory

pToday = (struct Date *)malloc(sizeof(struct Date)); 

// Now the struct has memory.

// Never try to count bytes in a struct, use sizeof

There are two different expressions to access the attributes of structs:

<name_of_struct_variable>.<attribute_name> // point operator

<pointer_to_struct_variable>-><atribute_name> // arrow operator

Today.day = 2;

Today.year = 2018;

strcpy(Today.month, "Nov");

pToday->day = 2;

pToday->year = 2018;

strcpy(pToday->month, "Nov");



Structs (16)
void ProcessBook(const char *pAuthor, const char *pTitle, const char *pISBN, 

                               const struct Date edition)

{ // compare with code on slide Structs (11)

  struct Book *pTextbook = (struct Book *)malloc(sizeof(struct Book));

                                                                       // allocate memory for the main  body of struct

  pTextbook->pAuthor = (char *)malloc(strlen(pAuthor) +1); // allocate memory for author

  strcpy(pTextbook ->pAuthor, pAuthor); // copy the author's name

  pTextbook ->pTitle = (char *)malloc(strlen(pTitle) +1);

  strcpy(pTextbook ->pTitle, pTitle);

  strcpy(pTextbook ->ISBN, pISBN);

  pTextbook->Edition.Month = edition.Month; // Attention: both -> and .
  pTextbook->Edition.Year = edition.Year;

  …………………………….. // do something

  free(pTextbook->pAuthor); 

                              // do not forget to release memory

  free(pTextbook->pTitle);

  free(pTextbook); // must be the last release

}



Structs (17)
struct Book *pTextbooks = (struct Book *)malloc(n * sizeof(struct Book));  

// dynamically allocated array of n books

pTextbooks is the pointer to array of n structs.

pTextbooks + i points to the i-th element in the array.

(pTextbooks + i)->pAuthor gives the pointer to the author of i-th book.

Parentheses are needed because the precedence of -> is higher than the precedence of 

addition but we need to execute the addition first.

Example: printing of data of the i-th book:

printf("%s\n", (pTextbooks + i)->pAuthor);

printf("%s\n", (pTextbooks + i)->pTitle);

printf("%s\n", (pTextbooks + i)->ISBN);

printf("%d\n", (pTextbooks + i)->Edition.Month);

printf("%d\n", (pTextbooks + i)->Edition.Year);

Syntactic shorthand like pTextbooks[i].pAuthor is also applicable.



Structs (18)
Exercise:

typedef struct Date {

int day; 

char month[4];

int year;

} DATE;

typedef struct Exam {

char *pSubject; 

DATE date;

int mark;

} EXAM;

Write a function with prototype 

EXAM *MySession(int *pnExams);

that creates a dynamically allocated array presenting all your examinations on this semester,

initializes it and returns the pointer to it. 

Write also main() that prints the array, calculates and prints the average mark and before exit 

releases all the allocated memory. Example code snippet for main():

int nExams; // the value of this variable (i.e. number of exams) is set by function MySession

EXAM *pMyExams = MySession(&nExams);



Structs (19)
Exercise: write a function with prototype 

EXAM **MySession(int *pnExams);

that creates a data structure similar to the following figure and returns the pointer to it:

Write also main() that prints the array, calculates and prints the average mark and before exit

releases all the allocated memory. Example code snippet for main():

int nExams; // the value of this variable (i.e. number of exams) is set by function MySession

EXAM **ppMyExams = MySession(&nExams);

for (int i = 0;  i< nExams; i++)

    printf("%s\n", (*(ppMyExams + i))->pSubject); // prints all the subjects



Structs: crib sheet (1)
struct Date {

int Day; // attribute Day, an integer

char Month[4]; // attribute Month, strings "Jan", "Feb", etc.

int Year; // attribute Year, an integer

};

struct Student {

    char *pName; // attribute pName, pointer to separate memory field presenting the name

struct Date Birthdate; // attribute Birthdate, struct Date nested into struct Student

double AverageMark; // attribute AverageMark, floating point value

};

void fun() {

   struct Student Guy; // local variable, memory allocated automatically

   Guy.pName = (char*)malloc(strlen("John Smith") + 1)); 

                                   // memory for name, to be allocated by us

   strcpy(Guy.pName, "John Smith");

   Guy.Birthdate.Day = 9;

   strcpy(Guy.Birthdate.Month, "Dec");

   Guy.Birthdate.Year = 2002;

   Guy.AverageMark = 4.5;

   free(Guy.pName); // variable Guy is removed automatically, but memory allocated by

                          // malloc must be removed by us

}



Structs: crib sheet (2)
struct Date {

int Day; // attribute Day, an integer

char Month[4]; // attribute Month, strings "Jan", "Feb", etc.

int Year; // attribute Year, an integer

};

struct Student {

    char *pName; // // attribute pName, pointer to separate memory field presenting the name

struct Date Birthdate; // attribute Birthdate, struct Date nested into struct Student

double AverageMark; // attribute AverageMark, floating point value

};

void fun(){

   struct Student *pGuy = (struct Student *)malloc(sizeof(struct Student)); // memory for struct                                                                 

   pGuy->pName = (char*)malloc(strlen("John Smith") + 1)); // memory for name

   strcpy(pGuy->pName, "John Smith");

   pGuy->Birthdate.Day = 9;

   strcpy(pGuy->Birthdate.Month, "Dec");

   pGuy->Birthdate.Year = 2002;

   pGuy->AverageMark = 4.5;

   free(pGuy->pName);

   free pGuy;

}



Structs: crib sheet (3)
struct Date {

int Day; // attribute Day, an integer

char Month[4]; // attribute Month, strings "Jan", "Feb", etc.

int Year; // attribute Year, an integer

};

struct Student {

    char *pName; // attribute pName, pointer to separate memory field presenting the name

struct Date *pBirthdate; // attribute pBirthdate, pointer to separate memory field

double AverageMark; // attribute AverageMark, floating point value

};

void fun(){

   struct Student Guy; 

   Guy.pName = (char*)malloc(strlen("John Smith") + 1)); // memory for name                        

   strcpy(Guy.pName, "John Smith");

   Guy.pBirthdate = (struct Date *)malloc(sizeof(struct Date)); // memory for birthdate

   Guy.pBirthdate->Day = 9;

   strcpy(Guy.pBirthdate->Month, "Dec");

   Guy.pBirthdate->Year = 2002;

   Guy.AverageMark = 4.5;

   free(Guy.pName); 

   free(Guy.pBirthdate);

}



Structs: crib sheet (4)
struct Date {

int Day, Year; // attributes Day and Year, integers

char Month[4]; // attribute Month, strings "Jan", "Feb", etc.

};

struct Student {

    char *pName; // // attribute pName, pointer to separate memory field presenting the name

   struct Date *pBirthdate; // attribute pBirthdate, pointer to separate memory field

double AverageMark; // attribute AverageMark, floating point value

 };

void fun(){

   struct Student *pGuy = (struct Student *)malloc(sizeof(struct Student)); // memory for struct                                                                 

   pGuy->pName = (char*)malloc(strlen("John Smith") + 1)); // memory for name

   strcpy(pGuy->pName, "John Smith");

   pGuy-> pBirthdate = (struct Date *)malloc(sizeof(struct Date)); // memory for birthdate

   pGuy->pBirthdate->Day = 9;

   strcpy(pGuy->pBirthdate->Month, "Dec");

   pGuy->pBirthdate->Year = 2002;

   pGuy->AverageMark = 4.5;

   free(pGuy->pName);

   free(Guy.pBirthdate);

   free pGuy;

}



Operator precedence (1)
Precedence Operator Description Associativity

1 ++ and --

( )

[ ]

.

->

Increment and decrement, postfix

Function call

Reading element from array

Structure member access

Structure member access through pointer

Left -> Right

2 ++ and --

-

!

(type)

*

&

sizeof

Increment and decrement, prefix

Sign conversion

Logical NOT

Type cast

Dereference

Address-of

Size-of

Right->Left

3 *

/

%

Multiplication

Division

Modulus

Left -> Right

4 +

-

Addition

Subtraction

Left -> Right



Operator precedence (2)
Precedence Operator Description Associativity

5 <=

<

>=

>

Less or equal

Less

Greater or equal

Greater

Left -> Right

6 ==

!=

Equal

Not equal

Left -> Right

7 && Logical AND Left -> Right

8 || Logical OR Left -> Right

9 ?: Conditional Right->Left

10 =

+=

-=

*=

/*

%=

Assignment

Addition assignment

Subtraction assignment

Multiplication assignment

Division assignment

Modulus assignment

Right->Left

11 , Comma Left -> Right



Time (1)
Reading the current time from the system clock:

#include "time.h"

time_t now; // time_t is specified by typedef, in Visual Studio it is is a 64-bit integer

time(&now); // the number of seconds since January 1, 1970, 0:00 UTC

To get the current date and time understandable for humans use the standard struct tm:

struct tm // do not declare it in your code, it is already declared in time.h

{

    int tm_sec;   // seconds after the minute - [0, 60] including leap second

    int tm_min;   // minutes after the hour - [0, 59]

    int tm_hour;  // hours since midnight - [0, 23]

    int tm_mday;  // day of the month - [1, 31]

    int tm_mon;   // months since January - [0, 11], attention: January is with index 0

    int tm_year;  // years since 1900, attention, not from the birth of Christ

    int tm_wday;  // days since Sunday - [0, 6], attention: Sunday is with index 0, Monday 1

    int tm_yday;  // days since January 1 - [0, 365]

    int tm_isdst; // daylight savings time flag

};

To fill this struct:

struct tm date_time_now;

localtime_s(&date_time_now, &now);



Time (2)
Example:

printf("Today is %d.%d.%d\n", 

date_time_now.tm_mday, date_time_now.tm_mon + 1,  date_time_now.tm_year + 1900);

Function asctime_s converts the struct tm to string:

char buf[100];

asctime_s(buf, 100, &date_time_now);

printf("%s\n", buf); // prints like Fri Nov 2 17:21:51 2018

but here we cannot set the format. Better is to use function strftime, for example:

strftime(buf, 100, "%H:%M:%S %d-%m-%Y", &date_time_now);

// prints according to Estonian format 17:21:51 02-11-2018

The complete reference of strftime is on http://www.cplusplus.com/reference/ctime/strftime/

The attributes of struct tm may be modified. For example, if we want to know what date is 

after 100 days, do as follows:

struct tm date_time_future = date_time_now;

date_time_future.tm_mday += 100; // add 100 days

time_t future = mktime(&time_date_future); // convert back to time_t

localtime_s(&date_time_future, &future); // convert once more to struct tm

asctime_s(buf, 100, &date_time_future);

printf("%s\n", buf); // prints like Sun Feb 10 17:21:51 2018   

http://www.cplusplus.com/reference/ctime/strftime/


Time (3)
We may create our own struct tm. Example: 

The ship departures on January 31 2020 at 13:20. It takes 2 days and 8.5 hours to reach 

Copenhagen. Find the arrival date and time.

struct tm departure = { 0, 20, 13, 31, 0, 120 };

// mktime ignores tm_wday and tm_yday, so here we can set them to zero. 

// do not forget that tm_year must be the year from 1900

struct tm arrival = departure;

arrival.tm_hour += 8;

arrival.tm_min += 30;

arrival.tm_mday += 2;

time_t arrive_t = mktime(&arrival);

localtime_s(&arrival, &arrive_t);

char buf[100];

strftime(buf, 100, "%H:%M:%S %d-%m-%Y", &arrival);

printf("%s\n", buf); // prints 21:50:00 02-02-2020



Files (1)
To work with a disk file, our first task is to open it:

FILE <pointer_to_struct_typedefed_as_FILE> = fopen(<filename_as_string_constant>, 

<mode_as_string_constant>);

Example:

FILE *pFile = fopen("c:\\temp\\data.txt", "wt+"); // open text file data.txt for writing and

// reading

struct with typedef name FILE is defined in stdio.h. We do not need to know its attributes.  

To avoid problems specify the complete path to the file. Do not forget that backslash as 

character constant is '\\'.

Binary files (character 'b' in mode string) are handled as byte sequences. Text files 

(character 't' in mode string) consist of rows of text. Each row is terminated by two 

characters: carriage return or CR or '\r' (0x0D) and line feed or LF or '\n' (0x0A).

To see the contents of file use freeware utility HxD (https://mh-nexus.de/en/hxd/):

https://mh-nexus.de/en/hxd/


Files (2)
The access modes are:

Mode Access

"r" For reading only. If the file was not found, fopen returns null pointer.

"r+" For reading and writing. If the file was not found, fopen returns null pointer.

"w" For  writing only. If the file was not found, creates it. If the file already 

exists, deletes its contents.

"w+" For reading and writing. If the file was not found, creates it. If the file 

already exists, deletes its contents.

"a" For  writing only. If the file was not found, creates it. If the file already 

exists, its contents is kept and the new data is appended. 

"a+" For reading and writing. If the file was not found, creates it. If the file 

already exists, its contents is kept and the new data is appended. 

The fopen mode string must specify the file type (binary or text) as well as the access 

mode. Examples: "rb", "at+" .

If you have finished the operations with file, close it:

fclose(pFile);



Files (3)
To write into a file use function fwrite:

<number_of_written_items> = fwrite(<pointer_to_data_to_write>, <size_of_data_item>, 

<number_of_items_to_write>, <pointer_to_FILE_struct>);

Example:

#pragma warning (disable: 4996) // for Visual Studio function fopen is unsafe. To

// suppress the compiler error message use this pragma 

char *pData = (char *)malloc(100);

……………………………………. // fills the array with data

FILE *pFile = fopen("c:\\temp\\data.txt", "wt");

if (!pFile)

{  // Good programming practice: check always

printf("Failure, the file was not open\n");

return;  

}

int n = fwrite(pData, 1, 100, pFile); // 100 characters, one byte each

if (n != 100)

{ // Good programming practice: check always

printf("Failure, only %d bytes were written\n", n);

}

fclose(pFile);



Files (4)

If you want to store a string, remember that to mark the end of row use '\n' only. '\r' will be 

added automatically.

Example:

const char *pData[] = { "Al Capone\n", "John Dillinger\n" };

FILE *pFile = fopen("C:\\Temp\\Data.txt", "wt+");

if (pFile)

{

fwrite(pData[0], 1, strlen(pData[0]), pFile);

// Stores without terminating zero. 

// fwrite(pData[0], 1, strlen(pData[0]) + 1, pFile); // with terminating zero

fwrite(pData[1], 1, strlen(pData[1]), pFile);

fclose(pFile);

}



Files (5)
Function fwrite may not store the data immediately. There is an inaccessible for us system 

buffer and the data is collected into it. The writing is automatically performed when the buffer 

is full. In this way time is economized. Function fflush forces the system to perform the 

writing immediately:

fflush(<pointer_to_FILE_struct>);

The file has an associated with it inner pointer that specifies the location to where the first 

written byte will be placed. If the opening mode was "w", then right after opening the pointer 

points to the beginning of file. If the opening mode was "a", right after opening the pointer 

points to the first byte after the end of file. After each writing the system shifts the pointer to 

the byte following the last written byte. 

If the opening mode was "w", you may select the location to where the first written byte will 

be placed or in other words, you may shift the pointer before writing: 

fseek(<pointer_to_FILE_struct>, <offset>, <origin>);

Origin is specified by constants defined in file stdio.h. They are SEEK_CUR (current 

position), SEEK_END (end of file) and SEEK_SET (beginning of file). Offset specifies the 

number of bytes from the origin. Examples:

fseek(pFile, 10, SEEK_SET); // put the pointer on the 10-th byte of file

fseek(pFile, -sizeof(struct Date), SEEK_END); // shift the pointer back to overwrite the last

// struct Date

If the opening mode was "a", the new data is always appended. Shifting with fseek is ignored.



Files (6)
To read from a file use function fread:

<number of_read_items> = fread(<pointer_to_buffer_for_read_data>, 

<size_of_data_item>, <number_of_items_to_write>, <pointer_to_FILE_struct>);

Example:

char *pData = (char *)malloc(100);

FILE *pFile = fopen("c:\\temp\\data.txt", "wt+");

if (pFile)

{

int n = fread(pData, 1, 100, pFile); // 100 characters, one byte each

if (n != 100)

{ // it may be not a failure, simply there was no data

printf("Only %d bytes were read\n", n);

}

fclose(pFile);

}

In case of text files the carriage return – line feed pairs ("\r\n") at the row ends are replaced 

by line feeds. 

Use fseek to specify the location of the first byte to read. It is possible in each mode, even 

in case of "a+". After reading the file pointer is shifted to the first not read byte.


	Slide 1: Structs (1)
	Slide 2: Structs (2)
	Slide 3: Structs (3)
	Slide 4: Structs (4)
	Slide 5: Structs (5)
	Slide 6: Structs (6)
	Slide 7: Structs (7)
	Slide 8: Structs (8)
	Slide 9: Structs (9)
	Slide 10: Structs (10)
	Slide 11: Structs (11)
	Slide 12: Structs (12)
	Slide 13: Structs (13)
	Slide 14: Structs (14)
	Slide 15: Structs (15)
	Slide 16: Structs (16)
	Slide 17: Structs (17)
	Slide 18: Structs (18)
	Slide 19: Structs (19)
	Slide 20: Structs: crib sheet (1)
	Slide 21: Structs: crib sheet (2)
	Slide 22: Structs: crib sheet (3)
	Slide 23: Structs: crib sheet (4)
	Slide 24: Operator precedence (1)
	Slide 25: Operator precedence (2)
	Slide 26: Time (1)
	Slide 27: Time (2)
	Slide 28: Time (3)
	Slide 29: Files (1)
	Slide 30: Files (2)
	Slide 31: Files (3)
	Slide 32: Files (4)
	Slide 33: Files (5)
	Slide 34: Files (6)

